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Symbolic sequence statistical analysis for free liquid jets

J. Godelle and C. Letellier
CORIA UMR No. 6614, Universite´ et INSA de Rouen, Place Emile Blondel, F-76821 Monte Saint-Aignan Cedex, France

~Received 2 December 1999; revised manuscript received 21 June 2000!

Free liquid jets are investigated here as nonlinear dynamical systems. A scalar time series corresponding to
the time evolution of the jet diameter is then used to investigate the underlying dynamics in terms of recon-
structed phase portraits, Poincare´ sections, and first-return maps. Particular attention is paid to characterizing
the behavior using symbolic sequence statistics that enable different atomization regimes to be distinguished.
Such statistics are first applied on theoretical maps to support the results obtained on the jet dynamics.

PACS number~s!: 47.52.1j, 05.45.2a
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I. INTRODUCTION

Liquid jets have been extensively studied since the p
neering paper by Rayleigh@1#. In particular, the stability
curve, i.e., the breakup length versus the fluid velocity,
been investigated by Weber@2#. More recently, it has been
shown that three main classes of liquid-gas jets, i.e., a liq
jet within a gas environment, may be identified@3#. It has
been observed that two of these classes may be distingui
by a perturbation growth analysis@17#. Such an analysis ha
been used to show that when the liquid jet dynamics
mainly governed by the internal forces due to the veloc
field of the liquid flow, initial perturbations near the need
are larger than when the jet dynamics is mainly governed
the capillary instabilities. Nevertheless, jet atomization
governed by very complex dynamics that are not fully u
derstood. Very recently, experimental studies of a forc
gas-gas jet at a moderate Reynolds number have reve
that the atomization processes may be interpreted in term
low-dimensional chaos as well as tangent bifurcations
intermittency@4#. Such features are very often observed
confined flows such as Taylor-Couette flow or Rayleig
Bénard convection that have been studied in experime
@5–7# using tools borrowed from the theory of nonlinear d
namical systems. Nevertheless, it has been shown that
techniques may also be used for open flows, as exempl
in the works by Broze and Hussain@4#. There are other in-
vestigations of open flows where low-dimensional behavi
are observed, as in the case of the dynamics in the wak
an oscillatoring cylinder in a free stream flow@8–10# or a
modulated flow through a planar symmetric channel exp
sion @11#, among others.

Phase intermittency will be shown to be associated w
atomization processes in cases where excited or free liq
gas jets are considered. Such studies will reveal that the
namics of liquid jets may be conveniently analyzed by us
concepts introduced in the theory of nonlinear dynami
systems. In order to do that, we will investigate the nature
the dynamics by using tools such as phase portraits, fi
return maps to Poincare´ sections, and angular first-retur
maps. Symbolic sequence statistics as introduced by T
et al. @12,13# will also be used. The latter approach has
ready been used for investigating experimental data in o
to validate a model for cyclic dispersion in a car engine@14#.
With the aid of these techniques, the deterministic nature
PRE 621063-651X/2000/62~6!/7973~9!/$15.00
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the jet dynamics will be investigated. Before an applicati
of the symbolic sequence statistics, we will start by a stu
of numerical maps to explain what exactly can be learned
using such a tool. In order to do that, a few applications w
be given on maps as exemplified by the logistic map or
antisymmetric cubic map.

The paper is organized as follows: In Sec. II, the expe
mental setup is briefly described and the dynamics of f
liquid-gas jets is investigated for six different control para
eter values using angular first-return maps. Section III gi
a brief introduction to symbolic dynamics and how it may
used to distinguish different kinds of dynamical behavi
The six jets will then be investigated using symbolic s
quence statistics. Section IV is a conclusion.

II. EXPERIMENTS

A. The experimental setup

The jet generation apparatus produces a cylindrical
with a diameter close to the internal diameter of the inject
needle,D5600mm. Here, the jet is produced by an inject
with a needle lengthL over D ratio equal to 10. This ratio
generates jets for which the velocity profile may play a p
ponderant role in the atomization processes depending on
nature of the liquid~see further details later!. Microdisplace-
ments allow block displacements of the injector and
needle in any direction. A laser sheet is produced by a He
circular Gaussian beam traveling through an optical sys
@15#. The collected intensity in the forward direction, using
method of ombroscopy, is linearly related to the jet diame
@16#. The laser sheet thickness~30 mm! associated with a
sufficiently high sampling rate~at least 100f R wheref R is the
Rayleigh frequency of the jet! then allows accurate measur
ments of the time evolution of the jet diameter. A sketch
the experimental setup is displayed in Fig. 1. Time series
recorded for successive locations along the jet axis, from
needle to the breakup in droplets, in 0.25- or 0.50-mm ste
depending on the distance between the needle exit and
lengthLBU , where the average breakup occurs.

Two kinds of liquid-gas jets are considered here. In t
first type, the liquid is pure water, while in the second it is
water-glycerol mixture~70% in weight of glycerol!. For both
types, the flow rateV is set to three different values reporte
in Table I with the corresponding breakup length values a
Rayleigh frequencies. Pictures of the jet for the six regim
7973 ©2000 The American Physical Society
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7974 PRE 62J. GODELLE AND C. LETELLIER
are displayed in Fig. 2. As observed on these six pictures
breakup lengthLBU depends on the flow rateV and on the
nature of the liquid. Generically, the stability curve that re
resents the function giving the breakup lengthLBU versus the
flow rate V looks like the one displayed in Fig. 3. On th
curve, a critical velocityVC separates two types of dynam
cal behaviors. For the lower velocities, the breakup len
increases with the flow rate. After the critical point located
VC , the curve slope is negative. For a flow rate greater t
VC , the perturbations are initiated by the action of the v
locity profile at the exit of the needle.

The three cases with the water-glycerol mixture and
first case with pure water are located on the increas
branch of the stability curve. Their dynamics are quite we
described by the linear Rayleigh theory. ForV5Vc
51.66 ms21 with pure water@Fig. 2~e!#, the working point is
located at the critical point of the stability curve~Fig. 3! and,
consequently, the Rayleigh frequency may be weakly sign
cant. The last case@Fig. 2~f!# is clearly located on the de
creasing branch of the stability curve.

B. Topological analysis

It has been demonstrated that working conditions are
sociated with two types of break-up mechanism related to
action of the velocity profile on the jet instability@17#. We
will focus our attention on the water jet with a mean veloc
V51.29 m s21 that presents the same dynamics as the f
others of the same class. The second class is only repres
by the water jet atV52.15 m s21. These two classes hav

TABLE I. Physical properties of the six working conditions o
liquid jet under study. Note that the Rayleigh frequency correspo
ing to the water jets with a flow rate equal to 1.66 m s21 is only
given as an indication and has no real physical meaning bec
this working point is not associated with conditions satisfying
Rayleigh theory.f 0 is the fundamental frequency computed fro
the experimental data. The Reynolds number is also reported.

Water-glycerol Pure water

V (ms21) 1.28 1.65 2.15 1.29 1.66 2.15
LBU (mm) 45.7 59.3 74.6 37.2 47.9 33.6

f R (Hz) 473 610 795 477 614
f 0 (Hz) 440 640 840 540 580 650

Reynolds num. 17 49 64 773 994 1288

FIG. 1. Experimental setup for the liquid-gas jet investigati
by ombroscopy.
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been shown to be governed by different dynamics beca
the initial perturbation amplitudes are different@17#. The dy-
namics of these jets are now investigated by analyzing
time evolution of the jet diameter dynamics with tools bo
rowed from the nonlinear dynamical systems theory. An
ample of such analysis is displayed in Fig. 4 for an exci
water jet withV50.81 m s21 for which the dynamical struc-
ture is clearer than for free water jets@16#. The needle is
characterized by a ratioL/D equal to 200 with an interna
diameterD5600mm. The needle length then allows a pe
odic excitation to be applied by a loudspeaker applied to
needle and connected to a frequency generator.

From the time evolution of the jet diameter@Fig. 4~a!#, a
phase portrait is reconstructed with the delay coordinate

X~ t !5U~ t !,
~1!

Y~ t !5U~ t1t!.

The time delayt is chosen to be equal to 1/(9FE), whereFE
is the excitation frequency. The organization of the traject
in the phase portrait can be studied precisely with the fi
return map@Fig. 4~c!#. For the excited jet, the first-retur
map presents an annular structure revealing that the dyn

FIG. 2. Photos of free jets for the six different working cond
tions investigated here.~a! V51.28 m s21, ~b! V51.65 m s21, ~c!
V52.15 m s21, ~d! V51.29 m s21, ~e! V51.66 m s21, ~f! V
52.15 m s21.

FIG. 3. The stability curve for liquid-gas jet. The increasin
branch (V,VC) corresponds to jet dynamics, well-described by t
Rayleigh theory, while the decreasing branch (V.VC) is here as-
sociated with atomization processes involving the effect of the
locity profile not taken into account by the linear theories. The th
working points for the water-glycerol mixture and the first one f
the pure water are located on the increasing branch.
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FIG. 4. The analysis is illus-
trated for d515.50 mm, i.e.,
slightly before the breakup of an
excited pure water jet. From the
phase portrait~b! reconstructed
from a time series~a! by using the
delay coordinates, a first-retur
map to a Poincare´ section is com-
puted ~c!. This first-return map
has an annular structure allowin
one to define a phase anglew to
study the dynamics. The first
return map onw ~d! is nearly tan-
gent to the bisecting line at two
points. A piecewise regression o
this angular map computed by us
ing a singular value decompos
tion ~SVD! technique is superim-
posed~gray curve!.
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ics is mainly deterministic and is based on a two-freque
torus. In order to investigate this type of annular structure
phase anglew in polar coordinates is defined, correspondi
to the angle between a given position vector and a refere
vector defining the phase origin. A first-return map on t
phase anglew is then computed@Fig. 4~d!#.

The points of the angular first-return map are confined
a curve that may be approximated by an interpolation Sin
lar Valve Decomposition~SVD! algorithm. This map is
twice nearly tangent to the first bissecting line on the inter
@2p; p#. This particularity characterizes the presence of
termittent mechanisms on the phase angle involving ‘‘tur
lent phases’’ where the dynamics is irregular, fast and str
and ‘‘laminar phases’’ in regions close to the tangenci
during which the dynamics is nearly periodic and slow. T
description characterizes aphase intermittency.

In the case of the free jets, and for the working conditio
located on the first increasing branch of the stability cur
the points of the angular first-return map@Fig. 5~d!# are es-
sentially located around the curve approximated from
measurement on the excited water jet. The configuration
the angular first-return map is still recognizable even thou
the points spread out from the estimated curve. This me
that the dynamics is mainly governed by a phase interm
tency as exhibited on the excited water jet. This dynam
behavior is thus deterministic. In contrast, when the work
conditions correspond to a point beyond the critical veloc
the points of the first-return map are not confined on a
structure~Fig. 6! and visit all the possible positions. On
may note that nonvisited regions on this angular first-ret
map are due to a property of the phase angle and are
related to the jet dynamics@16#. Consequently, the dynamic
could be associated with stochastic processes since no s
ture may be observed. This feature confirms the great dif
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ences between the two kinds of atomization regimes depe
ing on the working conditions. A deterministic dynamic
characterized by a phase intermittency is observed for all
jets located on the first increasing branch of the stabi
curve while a stochastic dynamics governs the atomiza
processes when the jets have a mean velocity greater tha
critical velocity for first regime jets only. The distinctio
between these deterministic and stochastic dynamics wil
confirmed by means of symbolic sequence statistics as
cussed in the next section.

III. SYMBOLIC SEQUENCE STATISTICS

A. Theoretical background

An aperiodic behavior may be generated by a simple m
such as the logistic map

xn115mxn~12xn!. ~2!

It has been shown that the behavior generated by such a
may be conveniently analyzed by using symbolic dynam
@18#. When the behavior settles down onto a chaotic attr
tor, it may be partitioned by using a topological criterio
Such a partition divides the phase space intoq disjoint sets,
each of which is labeled with a symbol. Consequently,
time evolution of the dynamical system is translated into
sequence of symbols labeling the partition elements vis
by an orbit. In the case where the logistic map is conside
the partition is given by the critical pointC that separates the
two monotonic branches making up the map~Fig. 7!. q is
therefore equal to 2. Indeed, it may be shown that the
creasing branch is an order-preserving branch while the
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FIG. 5. The analysis is illus-
trated for a pure water jet with a
flow rateV51.29 m s21. The time
evolution of the jet diameter~a! is
recorded at a distance from th
needled equal to 33.75 mm, i.e.,
just before the breakup. From th
phase portrait~b! reconstructed by
using the delay coordinates,
first-return map to a Poincare´ sec-
tion ~c! is computed. The angula
first-return map onw ~d! is twice
nearly tangent to the bissectin
line. The angular first-return map
is superimposed on the piecewis
regression of the angular first
return map computed for the ex
cited water jet.
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creasing branch is an order-reversing branch@19#. Thus, a
chaotic trajectory is described by a sequence$sn% of sym-
bols defined according to

sn5H 0 if xn,xC

1 if xn.xC,
~3!

wherexC is the coordinate of the critical pointC. Such a map
is said to be unimodal since a single critical point is
volved.

When no partition can be given using a topological cri
rion, symbolic sequence statistical analysis may be use
introduced by Tanget al. @12,13#. In such a method, the firs
step is to choose the numberq of the disjoint set into which
the reconstructed state space is divided. We will see that
parameter may be important when the results are interpre
Once this parameter is set, a numerical search is use
define partitions such that the individual occurrence of e
symbol is equipropable with all others. Thus, a trajecto
will visit equivalently each disjoint set defined by the stat
tical partition. For the sake of simplicity, theq symbols are
chosen in the setSq5$0,1,...,q21%. Once the partition is
defined, a trajectory is encoded as is usually done for
kind of symbolic dynamics.

The dynamics are investigated in a Poincare´ section. The
sequence of intersections between the trajectory and
Poincare´ plane is converted into a symbol sequence by us
a threshold function. The sequence of intersections$Pi% i 51

N

is encoded into$s i%, wheres iP$0,1,...,q21% are used. It is
defined according to our choice for equiprobable symb
For a given time series of lengthN, the probabilities of vari-
ous symbol sequences can now be estimated. Many leve
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investigation may be used according to the lengthn of sym-
bol sequences considered. At the first level, only the o
symbol sequences are considered and we thus haveq prob-
abilities characterizing the dynamics, name
P0 ,P1 ,...,Pq21 , where Pi is the probability of observing
the symboli. All Pi are obviously equal to 1/q. When the
two-symbol sequences are considered,q2 probabilities de-
scribe the dynamics. For instance,P13 is the probability of
observing the sequence ‘‘13,’’ and so on. At thenth level,qn

probabilities are used. The higher the level, the better
description of the dynamics. But to ensure that the statis
remain sufficiently well-defined, the choice ofn is limited by

FIG. 6. Angular first-return map built on a phase anglew de-
fined on a basic first-return map for the velocityV52.19 m s21 with
a pure water jet. The time evolution for the jet diameter is record
for d527.00 mm, i.e., just before the breakup. The working con
tions are located on the decreasing branch of the stability curve,
correspond to a jet for which the action of the velocity profile at t
needle exit is preponderant in the atomization processes. For c
parison, an approximation performed in the case of an excited j
represented on this figure by a gray curve.
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the length N of the set of intersections$Pi%. With N
510 000, we limit the choice ofn as follows:

q 2 3 4 5
n 6 4 3 3
qn 64 81 64 125

i.e., 1/qn'1%.
A statistical analysis is only possible through investig

ing the different probabilities for sequences of a given len
n occurring. The analysis may then provide a histogram g
ing such probabilities. In order to obtain the histograms,
different symbolic sequences are ordered as follows. Theqn

possible sequences composed ofn symbols chosen amongq

FIG. 7. Chaotic behavior generated by the logistic mapm
53.9). The critical point is located at the maximum, i.e.,xC50.5
for any m values.
-
h
-
e

different symbols are indexed according to the natural or
of the integer expressed in theq basis. For instance, in th
case where binary symbolic dynamics is considered, the
quence 000 100 is associated with the indexi 54, which is
the integer corresponding to the binary number 000100.

A first investigation with symbolic sequence statistic
analysis is achieved in the case where the logistic ma
iterated for four different values of the control parameterm
for which the kneading sequence@18#, i.e., the symbolic se-
quence of the last created periodic orbit, is identified belo

m Kneading sequence

3.70 ~1011 111!
3.90 ~1001 010!
3.98 ~1001 1!
3.9999 ~1000 001!

The four different maps are displayed in Fig. 8. The critic
point C is displayed as well as the pointCS defining the
statistical partition involving the two symbols. One may o
serve that when the control parameterm is increased, the
point CS tends toward the critical pointC. When the sym-
bolic dynamics is complete, i.e., all possible sequences b
with the symbol setSq5$0,1,...,q21% correspond to a peri-
odic solution embedded within the attractor, the critical po
C and the pointCS are located at approximately the sam
place. This means that the generating partition defined by
critical pointC induces equiprobable symbols, too. By inve
tigating the histograms computed for the fourm values, it is
observed that different sequences appear when the co
parameter is increased~Fig. 9! as expected from a rigorou
description of the evolution of the periodic spectrum. Nev
theless, whenm53.9999, a flat histogram is found, showin
that all sequences of six symbols are equiprobable. Suc
y
s
be-
-

FIG. 8. Different configurations of the logistic
map. The statistical partition defined byCS tends
to be equal to the generating partition, given b
the critical pointC, when the control parameter i
increased. One may also note that the chaotic
havior is more fully developed, i.e., new se
quences are authorized, whenm is increased.
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flat histogram may be associated with white noise but
with a colored or autoregressive noise.

We would like to check whether this conjecture is ge
eral, i.e., if it remains true for any kind of map. A statistic
analysis is therefore computed for different cases. The
one corresponds to the antisymmetric cubic map

xn115mxn
31~12m!xn , ~4!

for m54.0 for which three symbols are involved in the ge
erating partition. The second case is provided by the qua
map

xn1152mxn
41mxn

221, ~5!

for which three critical points located at60.5 and 0.0 sepa
rate four monotonic branches. The corresponding symb
dynamics over the symbol setS45$0,1,2,3% is complete for

FIG. 10. Symbolic sequence statistics for two different ma
with complete symbolic dynamics. As conjectured, the histogra
are flat, i.e., all sequences of any length are equiprobable when
number of symbols for the statistics is equal to the number of
joint sets induced by the generating partition.

FIG. 9. Histogram giving the probability of realization of a s
quence. The statistics are computed over 10 000 points (q52,n
56).
t
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st
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ic

m58.0. The histograms given by the symbolic sequence
tistics@(q53, n54) and (q54, n53), for the cubic and the
quartic maps, respectively# are both flat as displayed in Fig
10. Again, a complete symbolic dynamics onSq is associ-
ated with a flat histogram when symbol sequence statis
are performed with the number of symbols induced by
topological partition. Symbol sequence statistics are the
fore a very useful tool to detect completeness of symbo
dynamics. Indeed, as we observe in the case of the log
map ~Fig. 9!, a slight departure from the control paramet
value for which the completeness is observed on the cu
and the quartic maps may be identified.

This ability of the statistical analysis may greatly help
searching for control parameter values with complete sy
bolic dynamics. However, such flat histograms may also
associated with white noise. Thus, it may not be possible
distinguish such a stochastic behavior from deterministic
namics characterized by complete symbolic dynamics.
deed, faced with experimental data whose equations are
known, an additional criterion is required to distinguish
deterministic behavior characterized by complete symb
dynamics from white noise for which all sequences of a
length are equiprobable too. The key is then to investig
the dynamics by varying the number of symbolsq with
which the trajectory is encoded.

In this way, the histogram is found to be flat only whe
the statistic partition corresponds to the topological partiti
i.e., when the number of symbolsq is equal to the number o
disjoint sets defined by the generating partition. In oth
cases, some dominant sequences exist as exhibited in
11. A deterministic behavior characterized by complete sy
bolic dynamics may thus be distinguished from white noi
since in the latter case the histograms remain flat for ev
choice ofq andn. When the dynamical behavior is like whit
noise, the histogram remains flat for any number of symb
used. Nevertheless, it should be mentioned that such a
ture is not true for colored noise. Indeed, starting from a ti
series generated by the logistic map form53.98, we used a
Fourier transform to randomize the phase. In this case,
though the histogram is different from the one displayed
Fig. 9, it is not flat at all. Thus, when a histogram is found
be flat for any values ofq, it may be stated that the dynam
cal behavior is white noise.

B. Analysis of free liquid-gas jets

We showed in the previous section that with statisti
symbolic dynamics, white noise can be distinguished fr
other kinds of dynamics. Moreover, the number of the m
probable sequences reveals the complexity of the dynam
regime. This technique is now applied to free liquid jets.
our cases, it will be shown that, depending on the work
parameters, the underlying dynamics may be either de
ministic, since it is associated with intermittencies, or wh
noise.

The procedure for constructing a histogram from an
perimental time series is similar to the one used for
analysis of the logistic map, since it is applied to the fir
return map computed from the reconstructed phase port
i.e., a discrete map.
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Among the six different working points, it has alread
been established that one is governed by very different
namical behavior from the others, i.e., the nonstructured
gular first-return map observed for the case where the liq
is pure water with a flow rate equal to 2.15 m s21 suggests
that the dynamical behavior is stochastic. While phase in
mittency has been identified for the five other worki
points, such a characteristic behavior is not observed for
pure water withV52.15 m s21. Histograms have been com
puted for this regime with (q52, n56) and are displayed in
Fig. 12. No sequence seems to be clearly dominant for
regime, at least up to the breakup located around 33.6

FIG. 11. Different investigations for resolving the flatness of t
histograms. The fact that a flat histogram is obtained for sin
values of the number of symbolsq is a signature of deterministic
dynamics characterized by complete symbolic dynamics. Suc
behavior can therefore be distinguished from white noise for wh
the histograms remain flat independently of the values ofq andn. In
the case of the quatric map, a flat histogram is also obtained fq
52 because the statistical partition then corresponds to one cr
point of the topological partition. These two regions are thus as
ciated with two symbols each. Since each symbol is equiproba
both regions regions are equally visited.
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m

from the needle. All sequences are essentially equiprob
as would be observed for white noise. Around the break
~d532.0 mm andd533.5 mm), a few sequences may b
distinguished from the others. They mainly correspond
sequences such as 010101 or 101010. The symbol ‘‘1’’ m
be associated with oscillation that will become a droplet a
the breakup. The symbol ‘‘0’’ corresponds to a small lig
ment that will become a satellite~tiny droplet! after the
breakup. After the breakup, droplets and satellites m
sometimes collapse together. A flat histogram is then rec
ered. The symbolic sequence statistical analysis confi
that the dynamical behavior associated with this regime c
responds to white noise because a flat histogram is obse
for d545.3 mm~Fig. 12!.

For the five other working points investigated here a
before the breakup, particular sequences are clearly exhib
as soon as the oscillations of the diameter have a suffic
amplitude to be measured, i.e., approximately from a d
tanced520 mm from the needle~Fig. 13!. About ten se-
quences may be significantly distinguished from a statist
point of view and read as

000 000 100 000

000 011 110 000

000 111 111 100

001 111 111 100

011 111 111 111

These sequences correspond to bursts associated with
mittent processes. Series with large amplitude oscillati
are separated by low amplitude perturbations. Such dyna
cal behavior corresponds to a jet whose typical shape re
structed from the jet diameter measurements is displaye
Fig. 14.

e
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FIG. 12. Histograms for a free water jet with a flow rate equal
2.15 m s21. They have been computed for a few distances from
needle. Histograms are found to be mainly flat except near
breakup where a slight preponderance of a few sequences is
served.
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7980 PRE 62J. GODELLE AND C. LETELLIER
These relevant sequences in the behavior tend to be
dominant in the dynamics when the distance from the nee
is increased. Neard544.75 mm, there is a transition regio
before the breakup (LBU559.3 mm) where the histogram i
nearly flat and all sequences are equiprobable. In orde
check whether the dynamics are white noise or not, we c
puted histograms for different numbers of symbols~Fig. 15!.
When the number of symbols is set at 3 or 4, the histogr

FIG. 13. Histograms for a free water jet with a flow rate equa
1.66 m s21. They have been computed for a few distances from
needle. The histograms reveal deterministic dynamics as soon a
oscillation amplitudes are sufficiently large to be measured. Prep
derant sequences progressively disappear to leave a flat histo
slightly before the breakup (LBU547.90 mm). As observed for th
previous working point, sequences 010101 and 101010 are d
nant slightly beyond the breakup. Such a feature is typical for
five remaining working points. (q52,n56).

FIG. 14. Reconstruction of the jet shape from the diameter m
surements for a distance from the needled542.50 nm. The sym-
bols defined by the statistical symbolic dynamics are also repor
ss
le

to
-

m

does not remain flat and few peaks are observed. We sho
in Sec. II B that such a feature is characteristic of a comp
symbolic dynamics. Consequently, it seems that the ato
zation processes at the breakup are governed by a com
binary symbolic dynamics. We have at least ensured that
atomization processes near the breakup are not white n
This is quite an important result since it suggests that ato
zation processes could be controlled.

After the breakup, we recover the resonance observed
the stochastic regime. Indeed, sequences 010101 and 10
mainly dominate the dynamics at this stage. They corresp
to a succession of single droplets each with one satellite
seems that such behavior is actually characteristic of the
omization processes. If the investigation is pursued far fr
the breakup (d558.75 mm), it is observed that the histo
gram is nearly flat. Other computations done by increas
the number of symbols do not induce any significant cha
in the shape of the histogram~Fig. 16!, as any droplet and
satellite couple has relaxed into a larger droplet whose siz
nearly constant. Thus, only small fluctuations in the size
the diameter are measured. Nearly flat histograms reveal
these low amplitude fluctuations are governed by wh
noise.

e
the
n-
am

i-
e

a-

d.

FIG. 15. Histograms computed slightly before the breakupd
544.75 mm) for a water jet with a flow rate equal to 1.66 m s21.
Peaks appear when the number of symbols is increased. The u
lying dynamics are therefore deterministic as suggested by the
gular first-return map.

FIG. 16. Histograms computed far from the breakupd
558.75 mm) for a water jet with a flow rate equal to 1.66 m s21.
Increasing the number of symbols does not induce the presenc
obvious peaks. Diameter oscillations could be therefore identi
as white noise.
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IV. CONCLUSION

Different working points for free liquid jets have bee
investigated by using a symbol sequence statistics. This
teresting technique was first used on simple maps to h
light the kind of knowledge that may be obtained about d
namical behavior. It has been observed that when cha
behavior becomes more developed, the number of rele
sequences increases too. An interesting feature has bee
served in the case where the dynamical behavior studie
characterized by a complete symbolic dynamics for which
sequences are equiprobable. In order to distinguish such
havior from white noise for which all sequences are eq
probable too, it is sufficient to increase the number of sy
bols involved in the symbol sequence statistics, domin
sequences being recovered in the case of a deterministic
havior characterized by a complete symbolic dynamics.

Such a technique was thereafter used to analyze the
namics underlying free liquid-gas jets. Among the six wo
ing points investigated here, one is found to be white no
It corresponds to a working point for which the instabiliti
n

s

R.
n-
h-
-
tic
nt
ob-
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e-

i-
-

nt
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y-
-
e.

are governed by the velocity profile and no longer by t
capillary instabilities as observed for the five other worki
points although the capillary instabilities still govern the pe
turbation growth. In the latter cases, atomization proces
are clearly governed by a deterministic dynamics charac
ized by intermittencies as suggested by the angular fi
return map and the symbolic sequence analysis. Such at
zation processes can therefore be controlled by an exte
constraint to be defined. At the breakup, the behavior co
be described in terms of a complete binary symbolic dyna
ics. It could therefore be possible to modelize the time e
lution of the diameter by a quite simple map that remains
be discovered.
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